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Efficient Compilation of High-Level Data Parallel Algorithms 

Dan Suciu Val Tannen* 

Deptartment of Computer and Information Science 
University of Pennsylvania 

Philadelphia. PA 19104-6389, USA 
Email: (suciu,val)@saul.eis.upenn.edu 

Abstract 

We present a high-level parallel calculus for nested sequences. 
.VSC. offered as a possible theoretical "core" of an entire 
class of collection-oriented parallel languages. .VSC is based 
on u'/ii/e-loops as opposed to general recursion. A formal, 
machine independent definition of the parallel time complex- 
ity and the work complexity of programs in .VSC is given. 
Our main results are: (1) We give a translation method for 
a particular form of recursion, called map-recursion, into 
.VSC. that preserves the time complexity and adds an arbi- 
trarily small overhead to the work complexity, and (2) We 
give a compilation method for .VSC into a very simple vec- 
tor parallel machine, which preserves the time complexity 
and again adds an arbitrarily small overhead to the work 
complexity. 

1     Introduction 

There are many advantages to programming in a high-level 
language. However, while sequential algorithms are most 
of the time designed and evaluated in reasonably high-level 
terms, the situation with parallel algorithms is - by neces- 
sity, so far - more complicated. The issue is intimately con- 
nected with the existing efforts to bridge the gap between 
the theoretical design of parallel algorithms and practical 
programming on massively parallel computers. 

In the 'ase of data paralh lism. the work of Blelloch [Ble90. 
Ble93] and Blelloch and Sabot [BS'JO] has made substantial 
progress on this issue. For example, if we manage to rep- 
resent an algorithm in a high-level language such as XESL 
with a certain work and time (a.k.a. element or step) com- 
plexity and if the representation satisfies certain restrictions 
then we are guaranteed an implementation of the same algo- 
rithm with the same asymptotic time and work complexity 
in terms of a low-level parallel vector model, which in turn 
admits efficient implementations on various architectures, 
for example the CM2. The present paper is proposing a 
different  treatment of similar goals. 

par; Kill NSF   < I runt   ('CK-:M|. 

We start with a somewhat abstract high-level language 
which represents and manipulates mostly nested sequences 
(lists) and so we called it NSC, for nested sequence calculus 
(section 3). We regard AfSC as a possible theoretical "core" 
of an entire class of collection-oriented parallel languages. In 
keeping with the tenets of data parallelism [HS86], AfSCs 
only parallel operation is map (apply-to-all). We give a pre- 
cise high-level definition of parallel complexity (in the work 
and time framework [Jaj92]) for J\fSC programs. 

Blelloch [Ble90, Ble93] gives convincing evidence that 
nested map's on nested sequences (what he calls nested par- 
allelism) can enhance the expressiveness of a data parallel 
language. But these high-level features are quite removed 
from concrete parallel architectures or even the parallel vec- 
tor model and need to be compiled away. Unnesting the 
nested parallelism is at the center of the compilation tech- 
nique of [Ble90, BS90. Ble93], However, in a language with 
general recursion, this technique is guaranteed to preserve 
the asymptotic parallel complexity only for programs that 
satisfy a certain semantic condition called containement. 

.VSC is based on while-loops rather than general recur- 
sion. This will surely impose some limitations, although not 
that many: our first main result consists of showing that a 
large and practically relevant class of programs, called map- 
recursive, can be translated into .VSC while asymptotically 
preserving the time complexity and adding an arbitrarily 
small overhead to the work complexity (theorem 4.2). It 
even turns out that some recursive programs which are not 
contained in the sense of [Ble90] are in fact map-recursive. 
The major benefit however is that we can compile ,\rSC 
without the need for an unbounded stack of vectors, as gen- 
eral recursion would require. Avoiding the stack is a good 
idea because SIMD architectures associate a relatively small 
memory with each processor. A program that generates 
many entries in its vector stack will run out of memory even 
if the vectors are very short and hence much of the total 
amount of memory of the machine remains unused. We 
believe that our compilation technique can lead to better 
memory management. Of course, this needs to be tested in 

practice. 
Following Blelloch. we define a simple parallel vector 

model in order to describe abstractly the class of target ar- 
chitectures for our compilation method (section 2). Our 
BVRAM (Bounded Vector Random Access Machine) differs 
from the VRAM [Ble90] primarily in that it has a finite num- 
ber of vector registers. This emphasizes the absence of a run- 
time vector stack. Of course the number of registers needed 



depends on the source program being compiled. Another 
important difference is that we need less powerful communi- 
cation primitives. The BVRAM has no general permutation 
instruction, and its communication primitives can be imple- 
mented on a butterfly network with nlog n nodes in 0(log n) 
steps. The BVRAM can be efficiently implemented on SIMD 
architectures such as CM2 and MasPar MP-1, and it has the 
potential of efficient implementation on MIMD machines as 
well, such as CM5, Paragon XP/S, KSR1 etc. 

Our second main result is a technique that compiles any 
AfSC program into a BVRAM program again while asymp- 
totically preserving the time complexity and adding an arbi- 
trarily small overhead to the work complexity (theorem 7.1). 
Along the way we also give a simulation that allows us to 
understand AfSC complexity in terms of the complexity of 
computations on a certain flavor of PRAM (proposition 3.2), 
we show how to implement the BVRAM instructions on a 
butterfly network (proposition 2.1), we connect AfSC with 
some standard parallel complexity classes (proposition 6.2), 
we show how to represent in AfSC Valiant's 0(log n log log n) 
time sorting algorithm [Val75, Jaj92] (section 5), and, as 
part of the compilation process, we define an intermediate 
abstract language - the sequence algebra - which has the 
same power as BVRAM's but may prove more flexible in 
connecting to the designs of the future (section 7). 

AfSC borrows heavily from our experience with languages 
for collection types [BTS91, BBW92] and it is worthwhile 
mentioning that many of its operations make as much sense 
for sets and bags (multisets) as for lists (sequences). It mat- 
ters to us, though it may not be so relevant to the goals of 
this paper, that AfSC is based on a clear, statically checkable 
type system, that we understand the meaning of AfSC pro- 
grams independently of their parallel execution, and that we 
know how to reason about them - for example how to vali- 
date source to source optimizations. We have in mind appli- 
cations to databases and this naturally brings up important 
complexity issues. In a previous paper we have shown a 
tight connection between a related data parallel language 
for sets and the class NC [SBT94]. This in turn has led us 
to the more practical questions addressed here. 

2     The Target:   Bounded Vector Random Ac- 
cess Machines 

To compile the higher level programming language described 
in section 3 only a very simple vector parallel model is 
needed. The Bounded Vector Random Access Machine, 
BVRAM, is a restriction of the VRAM introduced in [Ble90], 
in that it only admits a fixed number of registers, and has 
only particular communication primitives, not a general per- 
mutation. The BVRAM can be efficiently implemented on 
a wide range of parallel architectures, because: (1) only a 
simple, rather particular form of communication is needed to 
implement every instruction of the BVRAM, and (2) mem- 
ory management at each processor is simplified by having 
only a bounded number of vector registers, as opposed to 
an unbounded number in the VRAM model. 

A BVRAM, M, consists of afixed number of vector reg- 
isters Vi, .... Vr. Each V, can hold a sequence (a vector) of 
natural numbers of arbitrary, but finite length. To keep the 
model simple, we don't include scalar registers: a number is 
represented by a sequence of length 1. A program for M is a 
sequence of labeled instructions, from the following instruc- 
tion set. For some of the instructions below, it is convenient 

to view a pair of registers V,, Vj in which the length of the 
first equals the sum of the numbers in the second as a nested 
sequence. E.g., intuitively we view [xo, ii, zo, «i, Z2], [2, 0, 3] 
as standing for the nested sequence [[x0, x{\, \\, [zo, z\, 22]]- 

• Move instruction: V <— Vj. 

• Arithmetic operations, of the form Vi <— Vj op Vj,-. 
Here op is an arithmetic operation from a set E. Vj 
and Vk must be arrays of the same length, and the 
operation op is applied simultaneously on all all ele- 
ments of Vj and Vk from the same positions, and the 
result is stored in Vi. In general we leave E unspeci- 
fied, but mention here that for theorems 4.2 and 7.1 

E has to contain +,—,*,/, right-shift, log2, while for 
proposition 6.2 we require that all operations in E be 

in NC. Monus, written m — n, is defined asm-« 
when m > n and 0 otherwise. 

• Sequence oriented operations: V, *- Q loads the empty 
sequence in V,. V,; +- [n], where n € N loads the 
singleton sequence [n] into V,. V, <— Vj@Vk appends 
Vj and Vk and stores the result in Vt. V, <— [length{V3)} 
computes the length of Vj. V, <— enumerate(V3) loads 
the sequence [0,1,..., n - 1] into Vi, where n is the 
length of Vj. 

• Bounded monotone routing V <— bm-route(Vj, Vk, Vi); 
here Vk and Vi must have the same length. The ef- 
fect is that each element in V is replicated a num- 
ber of times equal to the corresponding number in Vjt. 
In addition, it is required that the result matches in 
length the sequence Vj (i.e. initially Vj,Vk represent 
a nested sequence). E.g. if V, = [zo, £i, 20, zi, 22], 
Vk = [2,0,3] and V = [a,b,c], then the instruction 
Vi <— bm.route(Vj,Vk,Vi) stores [a, a, c, c, c] into V;. 

• Segmented bounded monotone routing V, <— sbm.route 
(Vj,Vk,Vi, Vm). Here, V,,Vk and Vi,Vm must be nested 
sequences, and length(Vk) = length(Vm). Then, the 
subsequences of V are replicated according to the num- 
bers in Vk and the result is stored in V. E.g., suppose 
Vj = [x0,xi,za,z1,z2], Vk = [2,0,3], V = [ao,ai,b0, 
&!, 62,co,ci,c2] and Vm = [2,3,3]. Then, after V, <- 
sbm-route(Vj, Vk, V, Vm), V, will hold the value [a0,ai, 
ao,ai,co,ci,c2,co,ci,C2,co,ci,C2]. In the particular 
case when Vk,Vm have length one, this computes the 
cartesian product of V, and Vj. Note that the length 
of the output is < length(Vj) * length(Vi) and that 
bm-route can be expressed with two sbm-route instruc- 
tions. 

• Selection V, <- <T{VJ). The effect is that the nonzero 
values of Vj are packed and moved into V,. E.g. if 
Vj = [3, 0,1, 0, 0, 4], then [3,1, 4] is stored in V,. 

• The unconditional jump goto I and the conditional 
jump if empty?(Vt) then goto I, where / is a label of 
some instruction. The conditional jump is taken iff V, 
currently holds the empty sequence. 

• halt, stops the program. 

We associate with each BVRAM program P two num- 
bers: r,,r0, the number of input and output registers. P 
expects r, inputs in the registers \>\ ,..., Vr,, and returns 
r0 outputs, in V,..., VTo.  For some input, the result of P 



might be undefined, if P enters an infinite loop, or if an er- 
ror occurs. For a terminating execution of P, we define the 
parallel time complexity T to be the total number of in- 
struction executed by P, i.e. each instruction is considered 
to have parallel time complexity 1. Similarly, we define the 
work complexity W as the sum of the work complexities 
of all instructions executed by P, where the work complexity 
of some instruction is defined to be the sum of the lengths 
of its input and output registers. 

As opposed to VRAMs [Ble90] there is no general permu- 
tation instruction on a BVRAM (but one can be computed 
with an increase in the time or work complexity). This may 
lead to more efficient implementations on fixed-connection 
networks, as exemplified by the following proposition. 

Proposition 2.1 Any BVRAM instruction of work com- 
plexity W can be implemented in time 0(log n) on a butter- 
fly network with nlogn nodes, where n = 0(W), using only 
oblivious routing algorithms. 

Proof. (Sketch) The arithmetic operations involve 
no communication at all, thus can be implemented in O(l) 
steps. The append operation Vt <— V}@Vk only requires a 
monotone routing of the values in Vk. This can be done 
in 0(log n) steps, using the greedy routing algorithm, see 
[Lei92], pp. 534. bm.route is implemented by a monotone 
routing, and takes 0(log n) steps with the greedy algorithm. 
For sbm.route, suppose first that length{V3) = length(Vi) = 
1, i.e. sbmjroute computes the cartesian product of V; and 
Vk- Also, suppose that the length of V, and Vk are pow- 
ers of 2, namely 2P and 2q respectively. Take n = 2p+q; 
then we have 2P packets residing in the first 2P rows of a 
butterfly with 2p+? rows, and we have to route the packet 
with address 00 ... 0up_i ... «i uo to all addresses of the form 
vq-i ... vivoUp-i ... u\«o- This is done in q stages, starting 
with the higher dimension, using the greedy algorithm. In 
the general case of sbm-route, we have to replicate a num- 
ber of smaller sequences. First, round upwards to the closest 
power of 2 the length of each such subsequence, and spread 
the sequences such that each sequence of lenght m starts 
at an address divisible by m. Next, perform in parallel all 
replications, as described above. □ 

When the number n of available processors is less than 
the number W of elements in an array, then we group — 
adjacent elements of the array in the same processor. The 
above proposition can be extended to this case: some in- 
struction of complexity W can be implemented on a butter- 
fly network in 0(— log n) steps. 

The Source: 
(AfSC) 

The Nested Sequence Calculus 

We use types to explain the structure of AfSC and classify 
its features. The types are given by the grammar t ::= unit \ 
N | / x t | t + t \ [t]. unit has exactly one value: the empty 
tuple (). N is the type of nonnegative integers. The values 
of the product type s x t are pairs (x,y), with x € s, y S 
t.   [t] is the finite sequences type over t: it contains all 
sequences [xo, ■ ■ ■ , xn-i], with n > 0 and lo i„-i € t. 
s + t is the disjoint union type of s and t; its values are 
of the form itii(i) with x E s and in2(y) with y € t.   We 

define the boolean type B = unit + unit, and identify its 
values ini(()) and if!2J()) with true and false respectively. 
Extending the list of built-in types with reals, strings, etc., 
can be done while preserving all results. 

The primitives of AfSC are chosen to be operations nat- 
urally associated to its types. Its expressions belong to 
one of two distinct syntactic categories: terms, denoted 
by M, N, P,U,V, etc., which have some type t, and func- 
tions, denoted by F, G, etc., have associated two types, the 
domain s and codomain t. By abuse of the language we say 
in this case that the "type" of some function F is s —► t. 
However s —* t is not a type per se, which makes constructs 
like s —<■ (ti —*■ t2) or (s\ —► S2) —► t impossible. Both terms 
and functions may contain free variables. See appendix A 
for a full and formal description of the language): 

• Variables x, error fi, constants n (where n £ N), 
arithmetic operations M op N, where op 6 E (recall 
from section 2 that £ = {+, —, *,/,...}), and equality 
M = N. 

• Constructs associated with the product type: (),7ri,7T2, 
(M, N). Here () denotes the empty tuple, (M, N) is a 
pair, while 7ri, 7T2 are the projections, with the meaning 

/ *    def , *    def 
Ki(x,y)   =   x,7r2(x,y)   =   y. 

• Constructs associated with the sum type: ini(M), 
in2(N), and case M of in\(x) => N 202(1) => P. 
The latter is defined to be equal to N[U/x] when M = 
in\{U), and respectively to P[V/y], when M = in2(V). 

• Constructs associated with functions: Ax : s.M and 
F(M). The former is called a lambda abstraction, and 
is a function (as opposed to a term), of type s —>■ t, 
provided that M is a term of type t. The second 
construct, F(M), is a term called function application 
having type t, provided that F is some function of type 
s-»(, and M is a term of type s. Although the type 
s is part of the syntax of Ax : s.M, we shall drop it 
when it is clear from the context. Note that Ax : s.F, 
where F is a function, is not a legal construct in AfSC, 
nor is Ax : s —► t.M, i.e. no higher order functions are 
allowed. 

• Iteration: while(P,F) is some function of type t —* t, 
provided that P and F are functions of type i —► B 
and t —► t respectively. 

• Constructs associated with collections (these constructs 
work on sequences but also make sense for other kinds 
of collections, like sets and bags [BBW92]): 0. W) , 
M@N, flatten(M), length(M), get(M), and map(F). 
Here Q denotes the empty sequence, [M] is the single- 
ton sequence,  and @ is the append operator.    Next, 

flatten ([xo, ■ ■ ■, xn-i\)     =    xo@xi@ ... @xn-i,  and 
length(M) returns the length of some sequence, get is 

defined by get([x}) = x, get(\\) = get([x0,xi, ■])  = 
Q. Finally map(F) is a function of type [s] —> [t], pro- 
vided that F is a function of type s —* t. Its meaning 

is: map(F)([x0,...,x„-1])   =   [F(x0),..., F(xn-i)]. "SPEi 

• Constructs associated only to sequences, and not to 
other kinds of collections: zip{M, N), enumerate(M), 
and split(M, N). The meanings are: zip([xo, ■ ■ ■, in-i]: 

[yo,...,yn-i])    =    [(x0,2/o),...,(x„_i,2/n_i)] {zip is 
undefined if its two arguments have different lengths), 

def 
enumerate([xo, ■ ■ ■, xn-i])    =    [0,..., n — 1].   Finally 

M^ti^hSS^L'% 
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splitiM, N) splits M according to the numbers con- 
def 

tained in N; e.g. split([a, b, c, d, e, /], [3, 0,1, 0, 2]) = 
[[a, 6, c], Q, [d], Q, [e, /]]. It is denned only if the sum of 
elements in N equals the length of M. 

Note that any function in AfSC can, in a fixed amount of 
time, only increase the size of its input by some polynomial. 
Had we introduced as a primitive in the language something 

like i(n) d= [0,..., n-1], which generates an arbitrarily long 
list out of a number, this property would fail. From this 
small set of primitives, we can derive a rich set of functions. 
Some examples: 

def 
Database projections, II; : [<i x t2] —> [*.], II, = 

map(xi). 
Conditionals, if x = y then M else N is expressed by 

case (x = y) of irn(v) => M in2(v) => N, where u,v are 
variables of type unit, not occurring in M,N. 

Broadcasting. p2(x, [yo, ■ ■ ■, J/n-i]), which is defined to 

be [(x, yo),..., (x, yn-i)], can be expressed as p2(x, y)   = 
map(\(v).(x,v))(y) and has the type p2 : 5 x [t] ->■ [s x t]. 
When x itself is a sequence, p2(x, y) essentially computes the 
cartesian product of x and y. (The name p2 is motivated by 
other considerations [BBW92].) 

Bounded monotone routing. bm.route((u,d),x), ex- 
pressed as U1(flatten(map(p2)(zip(x, split(u, d))))), has type 
bra-route : ([s] x [N]) x [t] -► [t]. brri-route is essentially the 
same operation as secribed in section 2. E.g. bm.route(([uo, 
ui,u2,vo,v1],[3,0,2]),[a,b,c]) = [a,a,a,c,c]. The bound 
u prohibits us from constructing a very long sequence in 
constant parallel time. An unbounded monotone routing 
m-route : [N] x [t] —> [t] can be defined in AfSC (with while), 
but requires more than a constant number of parallel steps. 
This is indeed necessary, since m.route([n],[a]), produces 
the sequence [a, a, ... , a] of lenght n, whose size is not poly- 
nomially bounded by the input. Finally, note that in the 
context of nested sequences, our bounded monontone rout- 
ing is not truly "monotone". Indeed, bm-route(([(),()],[2]), 
[[a,b,c]]) = [[a,b,c],[a,b,c]], and the relative order of a, b 
and c has not been preserved. This forces us to introduce 
sbm-route in the BVRAM model. 

Selections. <n : [s + t] -► [s], a2 : [s + t] -+ [t]. cri(x) se- 
lects from some sequence x only those elements which have 
the form imfii), while a2(x) selects only the elements of the 
form m2(n). E.g. if x = [mi (a), in2(b), m2(c), in2(d), ini(e), 
in2(f)], then <n(z) = [o,e], a2(x) = [b,c,d,f]. <n is defined 

by ffi(x) =' flatten{X{u).case u of irn(u') => [u] in2(u") => 
\})(x), and (72 is defined similarly. 

Operations on lists, first and tail can be defined by: 

first(x)      ='     get(get(bm-route{([()],[l,0]), 

split(x, [1, length(x) — 1])))) 

tail(x)      =      get(bm.route(([()],[0,l]), 

split(x,[l,length(x) - 1]))) 

If x is empty, split will produce an error. Similary we can de- 
fine last and remove-last, which return the last element, and 
delete the last element from a sequence, respectively. In gen- 
eral, we can access any element of some sequence of length 
n in O(l) parallel time, and with 0(n) work complexity (we 
formally define below the time and work complexity). Using 
map, we can produce an arbitrary permutation in O(l) par- 
allel time, but with an increase of the work complexity to 

0(n2). Using radix sort in base ne, for some arbitrary e > 0, 
we can even compute an arbitrary permutation in 0(1) par- 
allel time with 0(n1+€) work complexity. Alternatively, we 
can use an optimal sorting algorithm (see e.g. [Jaj92]), which 
reduces the work complexity to 0(n) by increasing the time 
complexity (e.g the sorting algorithm described in section 5 
has T = 0(log n log log n)). Thus, the cost of performing an 
arbitrary permutation is visible in the higher level language. 

The compilation theorem 7.1 is robust enough to hold if 
AfSC is extended with additional primitives, like a general 
permutation permute or scan operations, provided that cor- 
responding instructions are added to the BVRAM model. 
E.g theorem 7.1 can be extended to prove that AfSC + 
permute can be efficiently compiled into BVRAM+permute. 
But in its present form theorem 7.1 is stronger, because it 
proves a general permutation is not necessary in a BVRAM 
in order to compile efficiently a high-level language like AfSC. 
This is of importance in view of the high cost of implement- 
ing a general permutation on existing massively parallel ar- 
chitectures [KLGLS90]. 

As promised, we will give a high-level definition of par- 
allel time complexity T and work complexity W for AfSC 
programs, in an machine independent way. The idea is for 
the parallel complexity of a program to be inferred from 
its structure in the same way in which the sequential com- 
plexity is inferred from the structure of a program in a 
sequential language. In our case, all primitive operations 
(including @ and flatten) take one parallel step, while in 
a map(F)([x0, ■ ■ ■, Xn-i]), the n executions of F are done 
in parallel. The iteration construct however may count for 
several steps hence our definition cannot be done solely by 
induction on programs. This is handled by providing a for- 
mal operational semantics and then counting the depth of 
derivations in it. The work complexity is tied to the size of 
the data that is being manipulated. 

Formally, we start by defining S-objects by the gram- 
mar: C ::= () | n | (C,C) | im(C) | in2(C) \ [C,...,C] 
where n£N. We only consider typed S-objects objects. We 
adopt a unit size complexity measure, and define the size 
of some S-object by size(Q) = size(n) = 1, size((C,D)) = 
1 + size(C) + size(D), size(ini(C)) = size(in2(C)) = 1 + 
size(C), size([C0,... ,C„_i]) = 1 + £i=o,n-i size{d). We 

use true and false as abbreviations for mi(Q) and in2(Q). 
Next, we define the evaluation of some term (also called 

the operational semantics) in a natural semantics style, as 
in [Kah87]. This consists of rules which simultaneously de- 
fine a binary relation M ij-C meaning that the term M eval- 
uates to the S-object C and a ternary relation F(C) -U- C" 
meaning that the function F applied to the S-object C eval- 
uates to C". E.g. if F = Xx.flatten(x)@[lOO] and C = 
[[3, 5], [2]], then F(C) JJ. [3,5,2,100], Some representative 
rules are: 

M tym     N \].n 
M + N JJ. ra + n 

M\l(C,D) MV(C,D) 
7Tl(M)llC 

M J) C N ij-D 
(M,N)H.(C,D) 

M i)-[Co,...,Cm-i] 
M@N JJ.[Co, 

F(Co) l)-Do 

TT2(M) "-£> 
tfl|C     F(C) 1| D 

F(M)l)-D 

N l)-[Do,...,Dn-l] 

i Orr -i,D0, 
F(Cn- 

map(.F)([C,o,...,C'n_iJ)J|U>,o, 
P{C)i). false 

while{P,F)(C)\].C 

.,Dn-{\ 

"-■Pn-l 
,Dn 



P(C) JJ true     F(C) JJ. C     whilejP, F){C) JJ. D 
while(P, F)(C) ij-D 

The complete set of rules is given in appendix B where 
we explain a technical complication caused by the presence 
of bound variables (lambda abstraction) in the language, 
namely the need to use environments as in [Cur88]. 

Thus, to evaluate some closed term M, one has to con- 
struct a proof tree, whose nodes are labeled with rules of 
the operational semantics, such that its root is labeled with 
some rule with conclusion M JJ C. Based on this operational 
semantics, we now define the time and work complexity of 
AfSC in a machine independent way. 

Definition 3.1 Consider some AfSC term M. The time 
and work complexity T(M), W{M) of M JJ C are de- 
fined by induction on the proof of M JJ C. The induction 
is done simultaneously with the definition of the time and 
work complexity T(F, C) and W(F, C) of some evaluation 
F(C) 1J D, where F is a AfSC function, and C,D are S- 
objects. Except for the rules for map and while, for every 
rule of the form: 

M1ILCi,...,MnHCn 
M JJC 

we define: 

T(M)   =   1 + Y^T(M')        W(M)  =  SIZE+J2W(M') 

where SIZE is the total size of all S-objects mentioned in the 
rule (in the premises and the conclusion, including the en- 
vironments). For the map-rule, the definition ofW remains 
the same, while the definition of T becomes: 

T(M) 1 + max(T(M,)) 
t = l ,n 

(this corresponds to the fact that the function is applied in 
parallel on all objects in the sequence). For the while rule we 
do not include in SIZE the size of the output D (otherwise, 
the final output D of while would be counted as many times 
as many iterations are performed by while). More precisely, 
if the last rule of while(P,F)(C) JJ. D was: 

P{C) JJ true F(C) JJ C"     whilejP, F){C) JJ D 
while{P,F)(C)^D 

then: 

T(while{P,F),C) 

W{while(P,F),C)      = 

1 + T(P, C) + T{F, C) + 

T(while{P,F),C) 

size(C) + size(C ) + 

W(P, C) + W(F, C) + 

W(while{P,F),C) 

(i.e. size(D) is not included explicitly in W(while(P, F), C)) 

The language AfSC together with its notions of time and 
work complexity is a model of parallel computation in its 
own right but parallel algorithms are most commonly given 
in terms of one of the several known flavors of PRAM. To 
facilitate comparisons, we offer the following efficient simu- 
lation (AfSC's version of Brent's scheduling principle, as it 
were): 

Proposition 3.2 Any AfSC function of time complexity T 
and work complexity W can be simulated on a CREW PRAM 
with scan primitives usingp processors with asymptotic com- 
plexity 0(T + W/p). 

Proof. (Sketch) Given some function / in AfSC, first 
flatten / for an extended version of a BVRAM, with un- 
bounded many vector registers and indirect addressing (es- 
sentially the VRAM of [Ble90], but with the communication 
primitives described in section 2). The resulting extended- 
BVRAM program has the same time and work complexity 
as /: see remark 7.3. Next use the simulation of an ex- 
tended BVRAM on a CREW with scan primitives, in the 
spirit of [Ble90]. We need a CREW instead of a EREW in 
order to simulate bm.route and sbm-route. O 

4    Expressing map-recursive functions in AfSC 

Although it is described in a concise, mathematical style 
(notice that we called it a "calculus" rather than a "lan- 
guage" ) AfSC can be easily extended to a more user-friendly 
language, by allowing a certain amount of block structure: 
definitions of global/local variables and of nonrecursive func- 
tions. There is a straightforward translation of such an ex- 
tension back into AfSC, which we omit from this extended 
abstract. Accomodating recursive functions though, is a 
more delicate problem, which we address here. 

Consider the following limited form of recursion: 

Definition 4.1 A function definition is map-recursive if 
it has the form 

fun f(x) = c(x, map(f)(d(x))) 

First, it is easy for a compiler to check whether a recur- 
sive definition is of this form (in contrast, containment [Ble90] 
is an undecidable property). Second, this form is general 
enough to express many existent parallel algorithms: tail re- 
cursive definitions, and what is usually meant by divide-and- 
conquer recursion (for instance the worked example in sec- 
tion 5) are map-recursive. Here are some recursion schemata 
and a sketch of how to convert them into map-recursive form 
(and in the process "parallelize" them) : 

fun g(x)    =    if p(x) then s(x) else c(g(di(x)), g(d2(x))) 

fun h(x)    —    if p(x) then s(x) else c(h(d(x))) 

fun k(x)    =    if p(i) then s(x) else 

if p'(x) then c(k{d1{x)),k(d2(x))) 

elsec'(fc(di(z)),fc(<f2(z))>fc(<*3(z))) 

For g, we construct a list of lenght 2, and recursively map 
g on it (Quicksort has this form). For h, the list will have 
length 1 (tail recursion is a particularization of this form), k 
is more interesting, since it divides its input into either two 
or three subproblems. Note that it is not contained [Ble90], 
so the compilation techniques described here work on some 
cases on which those of [Ble90] don't. In converting k, the 
list will have length 1, 3 or 4, where the first element is a 
tag, and k is slightly modified to return the identity on the 
tag (a sum of types is used here). 

The first of our two main results states that map-recursion 
can be translated (in a source-to-source manner) into a AfSC 
expression, while preserving its time complexity and "al- 
most" preserving its work complexity. 



Theorem 4.2 Consider some function f defined in AfSC 
extended with map-recursion, with time and step complex- 
ity T, W. Then, for any e > 0, one can construct a func- 
tion /' in AfSC which is equivalent to f and which has time 
and work complexity T' = 0(T) and W = 0{W1 + £) re- 
spectively. Moreover, if the divide and conquer tree of f is 
balanced, then W - 0(W). 

Proof. For illustration, we consider only the function g 
from above. Suppose the types are: g : s —» t, d\,d,2 : s —* s, 
and c : t x t —» t. Not surprisingly, g can be expressed in 
AfHA, without recursion, in two steps, called divide phase 
and combine phase in [MH88]: 

Divide Phase Start with the singleton sequence y = [x] 
of type [s], and apply repeatedly the function flatten 
o map(Xx.'d p(x) then [x] else [dj(x),d2(x)]) having 
the type [s] —* [s], until all its elements satisfy the 
predicate p. (We need to tag the elements resulting 
from [x], to avoid applying p repeatedly on them; we 
omit the details.)  Call y the resulting sequence. 

Combine Phase Start by map-ing the function s on y, 
and then apply repeatedly c to adjacent elements of 
y: some additional bookkeeping is necessary to make 
sure eis applied to the correct pairs (e.g., it suffices to 
store the depth in the divide and conquer tree for each 
element in y, and only combine adjacent elements if 
they have the same depth). Stop when there is only 
one element in the resulting list. 

Obviously, the translated g will have time complexity 
0(T). The work complexity is also preserved, in the case in 
which the divide an conquer tree for the computation of g(x) 
is perfectly balanced. When the is unbalanced, the leaves 
which are reached sooner have to coexists in the same se- 
quence with those nodes which need more divide steps, thus 
adding to the total work complexity. Let v be the number of 
different levels in the divide and conquer tree which contain 
leaves E.g. in an almost perfectly balanced tree, v = 1 or 
v = 2, while in a total "unbalanced" tree, v can be equal to 
the total number of leaves, but still v < W(g,x). We can 
compute v in time and work complexity 0(T),0{W), by 
simulating only the divide phase, without retaining the re- 
sults. Let e > 0. We improve the divide phase, such that the 
time and work complexities of the translation of g into AfSC 
become 0(T) and 0(ucW) respectively. Namely, we start 
with 7 + 1 variables z,, i = 0,..., j, initialized to [], and 
with y initialized to the singleton [x\. We apply repeatedly 
the divide phase on y; whenever some leaves are reached, we 
move them into zo. We only allow zo to be touched vc times, 
after which we move its entire content into z\, and empty 
zo. We repeat this process, but only allow z\ to be touched 
ve times, at which point, we empty z\, by moving every- 
thing into 22. In general, we allow z, to accumulate only vc 

times, after which we empty it, by moving everything into 
Zi+i. Obviously, a number of v" levels of leaves must be 
discovered, before making one move into z,; thus, zi will 

be filled exactly once, with the leaves from all v levels. To 
compute the total additional work complexity, observe that, 
each leave travels exactly once through z0, Z\, ■ ■ ■, Zi, and 

in each z, is "touched" exactly i/£ times. Thus, the total 
work complexity is bounded by {\ + l)vzW = O(v'W). 
Of course, rather complicated bookkeeping is necessary to 
keep all elements in z, sorted. The combine phase is done 
similarly, but in reverse. D 

The technique of theorem 4.2 seems to extend to more 
general recursion Schemas than the limited recursion. The 
main kind of recursion to which this technique does not ap- 
ply is one in which some recursive call to / uses an argument 
which is computed with a recursive call itself, in the style of 
the Ackerman function: A(x, y) = A{x — l,A(x, y — \)). We 
argue that very few practical algorithms make indeed use of 
such recursion Schemas. 

5     An 0(log n log log n) Mergesort Algorithm Ex- 
pressed in AfSC 

As evidence for the practical expressiveness of AfSC we de- 
scribe in it Valiant's fast mergesort algorithm [Val75, Jaj92], 
see the program in figures 1, 2, 3. As we have explained at 
the beginning of section 4 we are free to use block struc- 
ture (we choose a syntax close to ML [MTH90]). More im- 
portantly, in view of theorem 4.2 we are free to use map- 
recursive definitions, or other recursive Schemas which are 
convertible to map-recursion. The main function mergesort 
in figure 1 has the same recursion schema as the function g 
of section 4 and hence can be converted to a map-recursive 
form. Its parallel time complexity is 0(log re log log n). 

The fast, O(loglogm) time merge function exhibits a 
more complicated kind of map-recursion. To merge two 
sequences A — [oo,...,om-i], B = [bo,... ,bn-i], we di- 
vide A into \y/rn\ subsequences of length < \fm\ let AA = 
[Ao, ■ ■ ■, A^_x] be the resulting nested sequence. Next, 
we find for each subsequence Ai the corresponding subse- 
quence Bi in B, with which Ai has to be merged, and 
apply recursively merge on all pairs (A,,B,); let BB = 
[Bo, ■ ■ ■, -By^-i]- Thus, the general structure of merge is: 

fun merge(A, B) = 
if length(A) < 2 then direct.merge(A, B) 
else let ... compute AA, BB as explained 

in flatten(map{merge){zip{AA,BB))) end 

which can be obviously translated into a map-recursion. 
Figures 2 and 3 contain some auxiliary functions used in 

merge. The function index(C,I) expects a sorted sequence 
of indexes / = [z'o,..., ik-i] and, for C = [Co,..., C„_i], 
returns the sequence [C,0,..., Cik_1]: it has constant time 
complexity and work complexity = 0(n + k). The func- 
tion indexsplit(C, I) splits C according to the indexes in /, 
again provided that / is sorted, with similar time and work 
complexity. We use the construct filter(P) : [t] -+ [t], which 
for some predicate P : t —>■ B returns the sequence of all 
elements satifying P. It is expressibel in AfSC by: 

filter(P)(x) = flatten(map(\uM P(u) thenfu] else [\)(x)) 

The functions first, tail, last, remove-last and bni-route 
are defined in section 3. 

Using the techniques described in [Jaj92], the merge func- 
tion can be transformed to become optimal, i.e. to reduce its 
work complexity from 0((m + n) log log m)) to 0(m + n). 
This also gives us an optimal (i.e. with O(nlogn) work 
complexity), 0(log n log log n)-time sorting function. The 
divide-and-conquer trees for both the sorting and the merg- 
ing function are balanced, hence the translation of theo- 
rem 4.2 gives us an optimal 0(log n log log n)-time sorting 
function in AfSC. 



fun mergesort(A) = 
if length(A) < 1 then A 
else let val n = length(A) 

val AA = split(A, [n - n/2, n/2]) 
in merge(mergesort(first(AA), 

mergesort(last{AA)))) 
end 

fun merge(A, B) = 
if length(A) < 2 then directjmerge(A, B) 
else 
let val m = length(A) 

val ra = length(B) 
val J4' = ,s9rt_positzon.s(j4) 
val 5' = sqrt-positions(B) 
(* J4', 5' have lengths -^/m and -^/n respectively 
val R' = direct-rank (A1, B') 
val BB\ = sqrt.split(B) 

(* split B into ^/n blocks *) 
val a-B = zip(A',index(BBl,R')) 

(* group each a' with its block *) 
val RR' = map(rank-one)(aJB) 

(* rank each a' in its block *) 
val R = map(X(x, y).(x - 1) * y/n + y) 

(zip(R', RR')) 
val AA = sqrtsplitA 
val BB = indexsplit(B',R) 

in flatten(map(merge)(zip(AA, BB))) 
end 

Figure 1: Valiant's O(log n log log n) sorting algorithm. 

fun rank-one(a, B) = length(filter(Xb.b < a)(B)) 

fun direct-rank(A, B) — map{\a.rank-one(a, B)){A) 

fun sqrt-positions(C) = 
let val n = length(C) 

val / = filter(\i.i modyfn = Q)(enumerate(C)) 
in index(C, I) 
end 

fun sqrtsplit(C) = 
indexsplit(C', sqrt-positions(enumerate(C))) 

fun direct-merge(A, B) = 
let val R = direct.rank(A, B) 

val 55 = indexsplit(B, R) 
in first(BB)@ 

flatten{map{X{a, B).[a]@B)(zip(A, tail{BB)))) 
end 

fun index(C, I) = 
let val n = length(C) 

val fc = length(I) 
val zero-toJc = enumerate(I)@[k] 

val de/ta_/ = map(-)(z!p(7@[ra],[0]@J)) 
val P = bm-route{(C, deltaJ), zero-toJk) 

val delta-P = map(-)(zip(P, removeJast([0]@P))) 
in bm-route((I, delta-P), C) 
end 

fun index~split(C, I) = 
let val n = length(C) 
in split(C, map(-)(zip(I@[n], [0]®/))) 
end 

Figure 3: The functions index and indexsplit. 

6     Theoretical Expressive Power 

In this section we give evidence that MSC is not too restric- 
tive, as a tool for designing parallel algorithms. Namely, 
let CRCW-TIME-PROC(T(rc), P(n)) be the set of functions 
computable on a CRCW PRAM in time T(n) using P(n) 
processors, and AfSC-TIME-WORK(T(n), W(n)) the set of 
functions expressible in MSC with time and work complex- 
ity T(n),W(n). 

Proposition 6.1 ForT(n),W(n), that are suitable (in the 
sense of [SV84J), we have: 

CRCW-TIME-PROC(0{T(n)), 0(W(n))) C 

MSC-TIME-W0RK{O{T{n)),W(n)o{1)) 

More, we get equality, if in the definition ofAfSC we restrict 
the arithmetic operations to the set E = {+,—}, and if we 

replace the unit size complexity (size(n) = 1 - see section 3) 
def 

with the logarithmic size complexity (size(n) = log n), in 
the definition of the work complexity of AfSC. 

The proof uses a theorem in [SV84], credited to Ruzzo 
and Tompa, relating CRCW PRAM's to Alternating Turing 
Machines, and is omitted from this extended abstract. Using 
the above proposition and proposition 3.2 we can establish 
that NC coincides with the functions in AfSC with polylog- 
arithmic time and polynomial work complexity. Recall that 
AfSC is parameterized by a set E of arithmetic operations. 

Proposition 6.2 Suppose all arithmetic operations in E are 
in NC. Then: 

NC = MSC-TIME- W0RK(\og,o{1) n, n 0(1)N 

Figure 2: Auxiliary functions used in merge. 

7    Efficient Compilation of AfSC to BVRAM 

Theorem 7.1 (Compilation Theorem) For every func- 
tion f in AfSC with time and work complexity T, W, there is 
a BVRAM, M, such that: Ve > 0, there is some program P 
for M, equivalent to f, having time complexity T = 0(T) 
andW = 0{W1+C). 



Note that, in contrast to theorem 4.2, the number of reg- 
isters only depends on / and not on e. A while-construct 
can be rewritten as a tail recursive function, hence is con- 
tained, according to the definition in [Ble90], and therefore 
the compilation technique described there (for a VRAM, 
with unbounded many vector registers) preserves its step 
and work complexity. However, we cannot apply that com- 
pilation technique here. Indeed, when viewed as tail recur- 
sive function, the work complexity of while may increases 
significantly, because the final result after iterating n steps 
is touched n additional times, as the tail recursive function 
returns from its calls. In the definition of the work com- 
plexity for while, these n additional touches are not counted 
(see definition 3.1). So the tail recursive translation has a 
higher work complexity than the original while construct. 
We need a stronger compilation technique in order to stay 
within the lower work complexity. Moreover, we also only 
have a bounded number of vector registers. 

The proof goes through the following steps: 

• Variable Elimination. We translate MSC into a rather 
similar, but variable free language called Nested Rela- 
tional Algebra, MS A. The new language only contains 
functions fs -> t, i.e. no terms. Some term M in MSC, 
of type t and with free variables Xi : s\,...,xn : sn, 
will be translated into a function }M ■ si x ... X sn —> t 
in MSA. The primitive functions and the constructs 
in AfS^correspong roughly to those in MSC, with only 
one additional primitive: the function p2 : s x [t] -* 
[s x t] (see section 3 for its definition). The step and 
work complexity of functions expressed in MSC and 
MSA are the same. We omit the description of MS A 
from this extended abstract; it can be found in ap- 

pendix C. 

• Flattening. We define a language for flat sequences, 
called Sequence Algebra 5.4, and translate MSA into 
SA. Namely, for any e > 0, we show how to translate 
a function / of MS A with time and work complexity 
T, W into an equivalent function in SA (thus using 
only flat types), with time and work complexity 0(T) 
and 0(W1+£). Of course, any function in SA can be 
expressed in MSA with the same time and work com- 

plexity. 

• We show that SA and BVRAM are equivalent, in the 
sense that any function in 5,4 can be simulated by a 
BVRAM with the same time and work complexity, and 
conversely. One direction of this equivalence helps us 
completing the compilation, while the other direction 
allows us to perform optimizations at the level of the 
language SA, instead of BVRAM. 

7.1     The Sequence Algebra, SA 

The Sequence Algebra, SA, only has flat types. More pre- 
cisely, we define first scalar types by the grammar: s :~ 
unit] N | s x s | s + s, and next define the flat types by the 
grammar:  t ::= unit | [s] | t x t | t + t. 

SA was designed by choosing some set of functions ex- 
pressible in MSA (or," equivalent, MSC) over flat types, 
which seemed to be enough to allow the language MSA 
to be translated (flattened) into SA. In addition, 5.4 is 
defined in an inductive way, which enables us to prove, by 
induction, properties about the functions expressible in SA, 
e.g. lemma 7.2. SA stands in the same relationship to MS A 

as the relational algebra stands to the nested relational al- 

gebra [AB88]. 
Similar to MSA, SA is a variable-free language, contain- 

ing some primitive functions, and a set of rules for combin- 
ing them in order to get more complex functions. We briefly 
describe SA below. A complete description of the language 

can be found in appendix D. 

• Error, viewed as a function Q : unit —+ 2. 

• map' s of scalar functions, map(<p) : [s] —► [s1], where 
p : s _+ s' is a scalar function, i.e., informally, a func- 
tion defined in MSA (or, equivalently MSC) having 
only scalar types as input, output, and intermediate 
types, and without while. 

• Operations on sequences: the empty sequence Q, ap- 
pend @, length of a sequence, defined as length(x) = 
[n], where n is the length of x, zip, hm-route, sbm.route, 
selections a\,u2 (see section 3), and the emptyness test 
empty?, of type [s] —► B. 

• Functions over flat types: the identity id : t ->■ t, 
composition of functions gof, projections 7r; : U xt2 -* 
tt, pairing of functions (f,g), injections in, : U -* 
ti+h, and sum of functions /1 + /2 : tx+t2 -► t, where 
fi : t, -+ t (an if construct can be derived from this). 

The latter is defined by:   (/1 + f2)(ini(x))   =   fi(x) 

and(/i+/2)(«»2(x))   =   f2(x). 

• Iteration: while(p, f) is a function of type t -+ t, when- 
ever f : i _,. f and p : t -> B (recall that B = unit+unit 

and, thus, is a type of SA). 

As for MSC we define the the time and work complexity 
for some evaluation f(C) JJ-, where / is a function in SA and 
C is its input (a flat S-object). Note that in the absence of 
a general map there is no nested parallelism in SA. 

Although SA does not contain nested types, like [N x 
[N x IM]], it is strong enough to allow such types to be en- 
coded into flat types. The key technical tool for that is 
to encode some nonflat type [t], where t is a flat type, by 
some flat type SEQ(t). For this we use segment descrip- 
tors, as in [Ble90]. Formally, we transform some flat type 
t into another flat type SEQ{t), defined by induction on 

t:   (1) SEQ{unit) (2) SEQ([s})   = x [s], (3) 

SEQ(t x *') = SEQ(t) x SEQ(t'), (4) SEQ(t + t') = 
[B] x SEQ(t) x SEQ(t'). The idea is that SEQ(t), although 
a flat type, can encode sequences of elements from t, i.e. 
values of type [<]. The main technical fact enabeling us to 
prove efficient compilation is the following map lemma. 

Lemma 7.2 (The Map Lemma) . Let f : t -► t' be 
some function in SA, and let T, W be the time and work 
complexity of map(f) (recall that map(f) is in MSC, but 
not in SA). Then, for every e > 0, there exists some func- 
tion SEQ(f) : SEQ(t) -* SEQ(t') in SA, of time complex- 
ity 0(T) and work complexity 0(W1 + E), which simulates 
map{f) : [t] -* [*']. More, the structure of SEQ(f) is inde- 
pendent ofe, which implies that "number of vector registers" 
used by SEQ(f) is independent of e. 

Proof. (Sketch) This is done by induction on the struc- 
ture of /. When / is map of a scalar function, SEQ{f) is 
essentially  the same  map.    When  / is some operation on 



a sequence, we only mention that SEQ(empty?) is essen- 
tially a selection, SEQ(oi) essentially <n, SEQ(bm.route) 
is a sbm-route, while SEQ(sbm-route) is another sbm-route. 
The only difficult case is when / is while{p,g). We describe 
very informally how to compute SEQ{while(p,g)){x), with 
x = [x0, ■■■, in-i], of a BVRAM. We could use the same 
idea as in theorem 4.2, but then the number of registers 
would depend on e. Suppose x is in register V0. We will use 
only two additional registers, Vi and V2, which are initially 
empty. Let U be the number of iterations of while(p,g)(x,), 
and assume without loss of generality that to < U < ... < 
tn-i (we conceptually group all Xi's having the same U), 
which implies U > »• Let 6 = ne, wt = W(while(p,g),xi) 
and r = - -1. For the moment, assume that in the sequence 

Xi)(/(j,),ff(
2)(ii),..., the last value (on position t,) has the 

smallest size, denoted by s;, so stU < wt. The simulation 
proceeds in r stages. The first stage starts by repeatedly ap- 
plying SEQ(g) on x: whenever some n's reach the end of the 
iteration, move them into Vi, until the first fr(< n') values 
are extracted from VÖ, namely x,,i = 1, j. The additional 
work complexity due to repeatedly touching the values in 
Vi is 0(ncW). At this point, we move the entire Vi into 
V2. For each of the remaining stages k = l,r - 1, apply 
repeatedly SEQ(g) on z, and move, when they terminate, 
the elements n, i = 6r"k+1 , JT^F fr°m ^> to Vi: at the end 
of stage k, we move the entire Vi into F2- The additional 
work complexity due to repeatedly touching some element 

in Vi at this stage is < Si-pbjr.   But since i > x, 

>  er- 

Jr-T-     ■LJU"   Dllll"c    *   —    (r-k + 1 > 

T, hence the additional work 
0 ' _ ... we have that i;  > i _   o  u. 

complexity for x, is < stUb < w,nc, which, when added 
up, accounts for only 0(ncW) for stage k, which adds up 
to at most 0(\neW) = 0(ncW) for all r stages. During 
all r stages, V2 is touched only r times, for an additional 
0{W) work complexity. At the end of the last stage, all 
Xi's (i = l,n) end up in V2, so V2 contains the result of 
SEQ{while(p,g))(x). 

Finally we have to show how to define SEQ(while(p, g))(x) 
in the general case, when the sequence Xi,g(xi),g(2)(x,),..., 
</(ti) has a minimum size on some position rm which is not 
necessarily the last one. In that case we first compute rm, 
for each i: this can be done with complexities 0(T) and 
0(W), by simply applying SEQ(g) repeatedly, and elimi- 
nating those elements which reach the end of their itera- 
tion. Next we split the whole iteration SEQ(while(p,g))(x) 
in two parts, essentially by synchronizing the n parallel iter- 
ations at the moment when they reach their minimum size, 
namely: (1) perform the n parallel iterations, as described 
above, but stop the iteration over i, at stept rm, (2) con- 
tinue the n parallel iterations, from step m, to U, using the 
same technique, but in reverse (because now the minumum 
sizes are at the beginning). 

D 

Remark 7.3 Had we had arbitrarily many registers instead 
of a bounded number, we could have designed SEQ(f) with 
time and work complexity 0(T) and 0(W) (instead of 0(T) 
and 0(W1 + e), which is used in the proof of proposition 3.2. 
Indeed, for f = while(p, g), assume again that, Vi = 1, n, the 
smallest size, denoted s,, in the sequence Xi, g(xi), g(2'{xi), 

gy-"(x,) is on the last position.  Then SEQ(while(p, g)) n('i)( 

is simulated by placing, upon completion, each element x, 
in some different register V,. At the end we have to com- 
bine the registers Vi,...,V„, which we do in the following 
order: combine Vn with Vn-\, the result with V„_2, . • •, the 

result with V\. The additional work complexity for the com- 
bine phase due to x; is s{i, which bounded by Wi, because of 
our assumption about si. We can extend the simulation to 
the case when the smallest sizes Si are reached at arbitrary 
moments, using the same technique as above. 

Finally, we flatten the language MS A into SA We start 
by flattening the types. For every type s oiAfSA, we define 
COMPILE (s) to be a flat type, which encodes s. Namely: 

def 
COMPILE{unit)     =     unit 

COMPILE (N)    d=     [N] 

COMPILER x s1)     =     COMPILE(s) x COMPILE(s') 

COMPILER + s') 

COMPILER]) 

COMPILE (s) + COMPILE (s1) 

SEQ{COMPILE(s)) 

Also, we define the functions encode,, : s —► COMPILE (a) 
and decodes : COMPILE{s) -* s in AfSA, with time com- 
plexity O(l) and work complexity linear in the size of the 
input, with the property decodes(encodes(x)) = x, for every 
x S s. The definition of the functions encode and decode 
are rather standard, and are omitted from this extended 
abstract. 

Finally, we can prove: 

Proposition 7.4 Let f : s -+ s' be some function in USA 
with time and work complexity T, W. Then, for every e > 
0, there is some function COMPILE(f) : COMPILE(s) — 
COMPILE(s1) in SA which "simulates f", i.e. for every 
x, COMPILE(f)(encode(x)) = encode(f(x)), with time and 
work complexity0(T), 0(W1 + e). Moreover, f requires "the 
same number of BVRAM registers" for every e. 

Proof. (Sketch) By induction on the structure of /. 
All cases are straightforward, except for the case when / = 
map(g), where we use the Map lemma. D 

7.2     Equivalence of S.4 and BVRAM 

The types in SA are slightly richer than those of the BVRAM: 
S.4 allows for types like [unit + N + N x N] + [N x N] x 
[N] + unit, while the types on the BVRAM are only of the 
form [N] x ... x [N].   However, encoding of S.4 types into 
BVRAM types is straightforward. 

Proposition 7.5 S.4 and BVAM are equivalent, i.e. any 
function f in SA with time and work complexity T, W can 
be simulated on a BVRAM with the same time and work 
complexity, and conversely. 

Proof. Simulating some function of SA by a BVRAM 
program is easily done by induction on the structure of that 
function. The converse is slightly more involved. Indeed, let 
r be the number of registers of a BVRAM M, and h some 
function in SA of type [N]x([N])r - [N]x([N])r performing 
one step of the program of M (where the program counter is 
encoded by a singleton sequence, on the first position). By 
iterating h we indeed achieve the desired time complexity, 
but not the work complexity, since at each step, the function 
h touches all r registers. To avoid this, we define a sequence 
of r functions /,, i = l,r. The inputs and outputs for /, are: 
the values of the i "smallest" resgisters, at some particular 
moment, the indexes of these i registers, the size S of the 



next largest register, and the program counter. /, iterates 
the one-step function as long as it only affects the i registers 
it sees, and as long as all the i sizes stay less than S. If any 
of these conditions is violated, /; stops. To do its job, /, 
calls /,-i, which iterates steps on M by only looking at the 
smallest i - 1 registers: when /,_i finishes, /, tries to do 
one more step by taking into account the i's smalles register 
as well, which /,-i ignores. If it cannot, then it returns (to 
fi+i). Else, it performs the operation, and calls /,_i again, 
possibly with a different set of i - 1 registers, from the set 
of i registers it sees. D 

Although only one direction of proposition is actually 
needed for the compilation theorem 7.1, the converse is sig- 
nificant from the point of view of optimizations: it implies 
that any optimizations done for the BVRAM can also be 
performed at the level of the SA language. 

8     Conclusions 

We intend to use NSC as a core for a "real" parallel language 
for querying nested collections, by adding proven features 
such as those encountered in functional languages like ML. 
Guaranteed complexity bounds such as those emerging from 
this paper can serve as useful guidelines for language design, 
especially in the database area. Of course, the techniques 
we have used in the translation of map-recursion and in the 
unnesting of nested parallelism need to be validated by prac- 
tical implementations. Equally important is to continue to 
investigate the practical expressiveness oiMSC by attempt- 
ing to represent various known efficient parallel algorithms. 
Another direction of investigation is to develop optimization 
techniques for this language by using ideas that have been 
proved useful in databases. 
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A     The Nested Sequence Calculus MSC 

We define a type context T to be a set of the form F = {x\ : si,...,xn : s„}, where z,- are variables and s; are types. We 
write T t> M : t, or T t> F : s —* t, when we want to say that, under the type assumptions of T, the term M has type t, or 

the function F has type s —» t. Below are the rules defining the language. Recall that B   =   unit + unit. 

Variables, Errors, Constants, Arithmetic 

x:t,T t>x:t           r t>n':*           T > n : N    ln C N> 

TOAf:N     TOiV:N    ,     ^ „         roM:N     r O TV : N 
r 0 M op TV : N          t°P c "J              r 0 M = TV : bool 

Type products 

T t> M : s,T > N : t      T t> M :sxt      T t> M : s x t 
Tt>():unit            T O (M, TV) : s x t       T 0 *i(M) : s      T t> w2(M) : t 

Type sums 

r O M : s                    Tt>M:t             T\>M:s + t     x : s,T O TV : u     y:t,T\>P:u 
r 0 ini(M) : s + t      T 0 in2(M) : s + t          T \> case M of im{x) ^ N \ m2(y) => P : u 

Functions 

x: s,T t> M :t          T O F : s -+ t, M : s 
r t>Xx :s.M :s-+t           T 0 F(M) : t 

Iteration 

T \> P :t^ bool     T 0 F : t -» t 
T 0 while(P,F) : t ->■ t 

Collections 

r 0 M : t             r 0 M : [t]     rt>JV:[i]                 T X> M : [[*]] 
r O 0 : [t]           r O [M] : [t]                    r 0 M@TV : [t]                    r O flatten(M) : [t\ 

T t>M :[t]                    T >M:[t]                     T \> F : s ^ t 
T 0 length(M) : N           TO pet(M) : t           T > map(F) : [s] — [t\ 

Sequences 

r oM ■.\s]    r oN:[t]                  r 0M: [<]                  rt>M:[i]    T \>N: [N] 
r 0 zip(M, TV) : [s x t]            T O enumerate(M) : [NJ              TO sp^tt(M, TV) : [[t\ V~ 

Weakening 

rt>«:( 
E : s, T >«:i 
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B     Operational Semantics 

We define an environment to be a finite set of the form p = {ii = C\,..., xn = C„}, where xi,..., xn are variables, and 
C\,..., Cn are S-objects. We say that p is associated to some type context T iff p and T mention exactly the same variables 
and if the type of C, is the type of the variable z, in T. 

The following rules define the ternary relation p • M JJ C and the 4-ary relation p • F(C) JJ C", where p is associated to 
some type context T such that T t> M :t, or T t> f : s —* t respectively. 

Variables, Errors, Constants, Arithmetic 

x = C, p • x JJ C p • n JJ n 

p»MJJra     p • N JJ n 
p» M + N JJm + n 

(similar for all op € £ and 

Type products 

         p.MJj-C    ptNtyD p»M ty(C,D) p»M JJ (C, £>) 
p. ()U() p . (M, iV) JJ (C, J) -Ki{M)tyC TT2(M)JJJ 

Type sums 

Functions 

Iteration 

Collections 

p»M JJC p.M JJC p«I|iiii(C)     x = C,p*N IJ.D 
p*im{M) JJzni(C) p»in2(M) JJm2(C) p • case M of i»i(i) =>• N \ m2(x) => P JJ. D 

p»JVJJC     p«f(C)JJJ z = C,p»MJJ.P 
p»F(N)i).D p»(Ax.M)(C) JJJ 

p « P(C) JJ false          p > P(C) JJ true     p»f(C)JJC'     p > u)fti/e(P, f)(C") JJ J 
p • u)/iz7e(P, P)(C) JJ C p • while(P,F){C) JJ £> 

p«M JJC p » M JJ [Co,... Cm-i]     p » AT JJ [Jo, ■ ■ ■, Dn-i] 
p • [M] JJ [C] p • M @N JJ [Co , . . . , Cm-1 ,D0,..., Dm-l] 

P,M JJ [[Coo, CQ1,...],[C10,C11, ...],...] p.MJJ[Co,...,Cn_1 

p • flatten(M) JJ [C00, Coi,..., Cio, Cu,...] p • length{M) JJ n 

p * M JJ [C] p.f(Co)|J)o      ...     p«F(C„-1)JJ Dn-i 
p*get(M)i).C p • map{F)([Co,. . •, C„_i]) JJ [Jo,..., -Du-iJ 

Sequences 

p » M JJ [Co,..., C„-i]     p « JV JJ [Jo,..., Z?n-l] P«MJ;[CO,...,C„-I] 
p • zip(M, N) JJ [(Co, Jo),..., {Cn-i,Dn-i)\ p»enumerate(M) JJ [0,..., n - 1] 

 p> M JJ [Co,. ..Cno-)., .. + nm_J       P» iV JJ [n0,...,Wm-i]  
p • SpUt(M, N) JJ [[Co, . . . , C„0_l], [C„0, . . . , Cno + nj-l], • • ■ , [Cn0 + .. . + 7ITO_2 , • • • , Cno +... + nm_ t ]] 

Weakening 

p.MJJ-C p«f(C)JJJ 
= C',p.MJJC x = C, p . F(C) JJ D 
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C     The Nested Sequence Algebra AfSA 

Errors, Constants, Arithmetic 

n £ I op € - 
0' : unit ->t n: unit -*■ N oy:NxN^N 

Function identity and composition 

/ : r —> s     g : s —> t 

= : hJ X I 

Type products 

Type sums 

idt :i —>■ t 

/i : s -+ *i     f2-s^t2 

go f :r -* t 

t -> wnz't {fi,h) ■ s -* h X <2 7Ti : ti x t2 -*■ ti 12 : <i X <2 -+ *2 

/1 : si —> <     f2 : s2 -* t 
im : h -»• <i + 22 m2 : <2 — *i + <2 /1 + /2 : «i + «2 -► t 6 : (U + h) x t -* h x t +12 x t 

Iteration 

p: t-> B     / :f->f 
while(p, f):t—*t 

Collections 

: unit —► [t] singleton : t —► [t] [t] x [t\ - [ij /fatten : [[tJJ - L*J 

 ___      _____      ___^A__ 
/erifft/! : [f] — N »et :[<]-*< map(/) : [s\ — [tj 

Sequences 

zip :'[s] x [2] —► [s x <J enumerate : [t] —► N 

Broadcast This replaces the "free variables" present in AfSC. 

p2 : s x [2] -» [3 x 2] 

sp« : [t] x [NJ — [|fJJ 

The evaluation relation /(C) JJ. C", for / some function in AfSA of type s — 2 and C, C" S-objects of type s and t 
respectively, is defined in a way similar to the definition for AfSC, but simpler because functions in AfSA do not have 
free variables, hence there is no'need for an environment. The time and work complexity T(f,C) and W(f,C) are defined 
accordingly. 

Proposition C.l  Any closed function f g AfSC with time and work complexity T, W is expressible in AfSA by some function 
f with time and work complexity 0(T), 0(W), and vice versa. Thus, AfSC and AfSA have the same expressive power. 
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D     The Sequence Algebra SA 

Scalar types are: a ::= unit | N | a x a \ s + a. Scalar functions ip : a —► s' are given by: 

Constants, Arithmetic 

n 6 I op e E 
ra : «mi ■ 

Function identity and composition 

op : N x =: IM X 

zrfs : s —>• s 

til h 
ip : a —► s      ip : s —> a 

ip o ip : a ^ s 

Scalar type products 

yi   : a —> Si        Ifi2  '■ 8 —» S2 

ls : s -f wm'i 7Ti : Si x s2 -> si 7r2 : si X s2 —>■ s2 {<fi, <p2) ■ s —> Si X a2 

Scalar type sums 

ipi : si —» 5     y>2 : S2 —» a 
*i : si -+ si + s2 in2 : s2 -*■ si + «2 <^i + p2 : «l + «2 ^ s 5 : («i + s2) x a -> si x s + s2 x < 

(Cont'd next page) 
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Flat types are: t ;:- unit \ [s] \ t x t \ t + t. Functions m SA f : t -+ t' are given by: 

Errors and Scalar operations 

ip : s —> s' a scalar function 
Ql : unit —► t map(tp) : [s] —^ [s ] 

Function identity and composition 

j'     _ . 4'    . iii          / : t -> f     g: t'-+ t" 
idt :t —► t g 0 / : t —> t 

Flat type products 

Flat type sums 

                 h ■ t -> <i    f2-t^t2 

\t : t->■ unit -Ki : ti x t2 -> ti ir2 : h x t2 -> <2 {fi, f2) ■ t-^ (ti,t2) 

fi:ti-+t     /2 : *2 - * 
,-ni : ij — *! + i2 m2 : t2 — <i + «2 fi+f2-h+t2^t b : (ii + t2) x i -► <i x t + t2 x t 

Iterations 

p:f — B     / :t-> t 
while(p, /):!—>■< 

Collections 

unit —>• [s] singleton : um'f —> [um£] : [s] x [s] —► [sj /engt/i : [s] 

empty? : [s] o-i :  si + s2] -> [si] 0-2 : [si + s2\ -► [s2\ 

Sequences 

zip : [s] x [s1] — [s x s'] enumerate : [s] — [NJ 6m_ro«te : ([s] x [N]) x [s'] — [s' 

sbm.route : (W x [NJ) x ([«'] x [Nj) - [s'\ 

Example D.l Informally we show how to compute combine : [B] x [s] x [s] -+ [s], where combine{f,x,y) combines the lists 
x and y, according to the flags given by f. The resulting list will have the same length as f, and will contain some x, on 
those positions where f is true, and some y, where f is false. E.g. when f = [true, false, false, true, false, true, true] and 
x = [xo,x1,x2,x3],y = [2/0,3/1,2/2], then combine(f,x,y) must be [x0,y0,yi,x1,y2,x2,x3]. To compute combine in SA, start 
by enumerate-ing f, to get [0,1,2,3,4,5,6], and by transforming the booleans into 0 and 1, to get [1,0,0,1,0,1,1]. Now 
apply bm-route to select from the first list those elements having a 1 in the second list, and obtain [0,3,5,6], Similarly, 
we obtain [1,2,4]. These two lists tell us on which position each element of x and y must end up. Next, we subtract each 
number in this list from its right neighbor (by considering 7 = length(f) to be the right neighbor of the last element), with the 
exception of the first position, where we also add the number itself. I.e., we get: [0 + (3 - 0), 5 - 3, 6 - 5, 7 - 6] = [3, 2,1,1] 
and [1 + (2 - 1), 4 - 2, 7 - 4] = [2,2,3]. Now we bm.route x and y, using these two lists as replication sequences, and get 
[x0,x0,x0.x1,xl\x2,x3] and [2/0,2/0,2/1,2/1,2/2,2/2,2/2] respectively (both have the length of f). Finally, we zip them together 
with f, and map some scalar function which selects Xi or y, according to the flag. 
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